MEC 393 Engineering Fluid Mechanics

Credits: 3
Contact Hours: 3 hour lectures per week

<table>
<thead>
<tr>
<th>LEAD COORDINATOR</th>
<th>TEXTBOOK</th>
</tr>
</thead>
</table>
| J. Kincaid | Aerodynamics for Engineers by J.J. Bertin, Prentice Hall
Intro to Fluid Mechanics by W.S. Janna, PWS Publishing Co. |

SUPPLEMENTAL MATERIAL

BULLETIN DESCRIPTION

The application of the principles of fluid mechanics to important areas of engineering practice such as turbomachinery, hydraulics, and wave propagation. Prepares students for advanced coursework in fluid dynamics. Extends the study of viscous effects, compressibility, and inertia begun in MEC 364.

PREREQUISITES: MEC 364
THIS COURSE IS a Technical Elective

COURSE LEARNING OBJECTIVES

1. Understanding the differential form and numerical solutions to Navier-Stokes Equations	Exams
2. Understanding the concept of Computational Fluid Dynamics (CFD)	Exams
3. Know how to analyze incompressible viscous flow	Exams
4. Understanding the principle of turbomachinery	Exams
5. Understanding the principle of airfoil and wing aerodynamics and design	Exams
6. Understanding the dynamics of a compressible flow field	Exams

STUDENT OUTCOMES SUPPORTED

(Scale 1-3)

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
<th>j</th>
<th>k</th>
<th>l</th>
<th>m</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

3 – Strongly supported
2 – Supported
1 – Minimally supported
Program Criteria

COURSE TOPICS

1. The differential forms and numerical solutions to the Navier-Stokes Equations.
2. Computational fluid dynamics (CFD)
3. Analysis of Incompressible Viscous Flow using the Generalized Bernoulli Equations
4. External Incompressible Viscous Flow Field
5. Introduction to Turbomachinery
6. Incompressible, Inviscid, Flow Field
7. Airfoil and Wing Aerodynamics and Design
8. Incompressible Flows around Airflows of Infinite and Finite Span
9. Dynamics of a Compressible Flow Field
10. Introduction to Flight at Transonic, Supersonic, and Hypersonic Speed Regimes, if time permits